The Seventh IEEE International Conference on Advanced Learning Technologies

ICALT 2007
Table of Contents

The Seventh IEEE International Conference
on Advanced Learning Technologies

Preface ..xx
ICALT 2007 Committees ..xxii
Program Committee Members ..xxiv
Executive Reviewers ..xxv

Keynotes

Torn between Technology Lust and Teaching Humans ...1
Carmen Taran

Does E-learning Have To Be So Awful? (Time to Mashup or Shutup) ...6
Marc Eisenstadt

New Educational Technology Models for Social and Personal Computing ...11
Eileen Scanlon and Tim O’Shea

Main Conference

A Broker Architecture for Integration of Heterogeneous Applications for Inquiry Learning15
Lars Bollen, Andreas Harrer, H. Ulrich Hoppe, and Wouter van Joolingen

A Case Study of Applying SNA to Analyze CSCL Social Network ...18
Zuoliang Chen and Shigeyoshi Watanabe

A Case Study of the Development of e-Learning Systems Following a Component-Based Layered Architecture ...21
Delano M. Beder, André C. Silva, Joice L. Otsuka, Celmar G. Silva and Heloisa V. Rocha

A Collaborative Medical Case Authoring Environment Based on UMLS ..26
Siriwan Suebnukarn, Phattanapon Rienmora, and Peter Haddawy

A Collaborative Support Tool for Creativity Learning: Idea Storming Cube ..31
Chun-Chieh Huang, Tsai-Yen Li, Hao-Chuan Wang, and Chun-Yen Chang

A Computer-Assisted Collaborative Approach for E-Training Course Design36
Hui-Chun Chu, Gwo-Jen Hwang, Po-Han Wu, and Jun-Ming Chen

A Conceptual Structure for Organizational Learning and Organizational Performance41
Li Zhang, Qiong Jia, and Ping Li
A Contextualization Method of Browsing Events in Web-Based Learning Content
Management System for Personalized Learning ...43
 Feng-Hsu Wang

A Dynamic E-learning System for the Collaborative Business Environment46
 Hsien-Jung Wu and Shih-Chieh Huang

A Framework for Automated Diagram Assessment in Online Learning51
 Sandra B. Fan and Steven L. Tanimoto

A Framework for Research on Technology-Enhanced Special Education54
 Ilkka Jormanainen, Eija Kärnä-Lin, Lauri Lahti, Kaisa Pihlainen-Bednarik, Erkki Sutinen,
 Jorma Tarhio, and Marjo Virnes

A Grid Service-Based Collaborative Network Simulation Environment
for Computer Networks Education ...56
 Miguel L. Bote-Lorenzo, Juan I. Asensio-Pérez, Eduardo Gómez-Sánchez,
 Guillermo Vega-Gorgojo, Yannis A. Dimitriadis, and Sergio Guíñez-Molinos

A Heuristic Understanding Model ..61
 Roland Kaschek, Eyas El-Qawasmeh, and Alexei Tretiakov

A Learning Support System by Reflection and Knowledge Collaboration in a Software Engineering
Project Course and its Preliminary Evaluation ...64
 Atsuo Hazeyama, Chika Takayama, Yuusuke Kobayashi, and Yoshioide Ohgame

A Lightweight Open Space for the Classroom—Collaborative Learning with Whiteboards
and Pen-Tablets ..66
 Henning Breuer, Christian Sousa, Nelson Baloian, and Mitsuki Matsumoto

A Methodology to Facilitate Inter-Trust in Computer Supported Collaborative Learning71
 Chih-Wei Chang and Gwo-Dong Chen

A Mobile Video Question Answering System for E-learning74
 Yi-Ting Huang, Ching-I Chung, Chi-Cheng Tsai, Chia-Hsing Shen, Yu-Chieh Wu,
 and Jie-Chi Yang

A Model for Analyzing and Evaluating the Return on Investment in e-Learning79
 Ling-yun Yi, Ming-zhang Zuo, and Zhi-xin Wang

A Multiagent Extension for Virtual Reality Based Intelligent Tutoring Systems82
 Ricardo Imbert, Leticia Sánchez, Angélica de Antonio, Gonzalo Méndez, and Jaime Ramírez

A Multi-Agent Formative Assessment Support Model for Learning Management Systems85
 Joice Lee Otsuka, Heloísa Vieira da Rocha, and Delano Medeiros Beder

A Multi-Parameters Personalization Approach of Learning Scenarios90
 Fathi Essalmi, Leila Jemni Ben Ayed, and Mohamed Jenni

A Music Programming Tool for Learning Object-Oriented Concepts92
 Hyosook Jung and Seongbin Park

A Participatory Learning Environment by Using Voice Trackback System in Zoological Garden ..94
 Yutaro Ohashi, Shuichi Nagata, Hiroshi Mashima, Hideaki Ogawa, and Makoto Arisawa

A Pedagogy-driven Personalization Framework to Support Adaptive Learning Experiences ...96
 Polyxeni Arapi, Nektarios Mounoutzis, Manolis Mylonakis, and Stavros Christodoulakis

A Petri Net-based Approach to Trust Development and Activity Understanding in Virtual University98
 Chun-Chia Wang, Lawrence Y. Deng, and Yung-Hui Chen

A Pilot Study of Applying Hierarchical Curriculum Structure Graph for Remedial Learning103
 YuLung Wu

A Pilot Study of the Development of Online Learning Strategies Scale (OLSS)108
 Meng-Jung Tsai
Assisted Ontology Instantiation: A LearningKit Perspective ... 265
 Liam Doherty, Vive Kumar, and Phil Winne

Augmented Interface for Children Chinese Learning .. 268
 Chien-Hsu Chen, Chun Chin Su, Po-Yen Lee, and Fong-Gong Wu

Authoring Tools in e-Learning: A Case Study ... 271
 Yaming Tai and Robert Yu-Liang Ting

Automated Course Composition and Recommendation Based on a Learner Intention 274
 Kun Hua Tsai, Tung Cheng Hsieh, Ti Kai Chiu, Ming Che Lee, and Tzone I Wang

Automatic Evaluation of Spatial Representations for Complex Robotic Arms Manipulations 279
 Philippe Fournier-Viger, Roger Nkambou, André Mayers, and Daniel Dubois

Bayesian Agent in e-Learning ... 282
 Maomi Ueno and Toshio Okamoto

Bayesian Modelling of Confusability of Phoneme-Grapheme Connections .. 285
 Mikko Vilenius, Jaanne V. Kujala, Ulla Richardson, Heikki Lyytinen, and Toshio Okamoto

Best Practice Instructional Design in the Synchronous Cyber Classroom for Early Childhood Students 288
 Megan Hastie, Nian-Shing Chen, and Yen-Hung Kuo

Bridging the Gap between Advanced Distributed Teaching and the Use of Learning Management Systems in the University Context ... 293
 Ari Marko Wahlstedt and Anne Marita Honkaranta

 Ekaterina Prasolova-Førland and Teng-Wen Chang

Building an Interactive Caring Agent for Students in Computer-Based Learning Environments 300
 Tsung-Yi Lee, Chih-Wei Chang, and Gwo-Dong Chen

Can Learning Object Metadata stand as Learning Resource Models for iLMS? .. 305
 Lahcen Oubahssi and Monique Grandbastien

CIEL, Architectures for Collaborative Inquiry and Experiential Learning .. 308
 Wouter R. van Joolingen, Lars Bollen, Ulrich Hoppe, and Ton de Jong

Classroom Climate and Learning Effectiveness Comparison for Physical and Cyber F2F Interaction in Holistic-Blended Learning Environment ... 313
 Nian-Shing Chen, Kinshuk, Chun-Wang Wei, Yi-Ru Chen, and Yu-Chun Wang

Cloze Information Gap Tasks with Print-Based Digital Content Interfaces .. 318
 John Brine, Kamen Kanev, Thomas Orr, and Deborah Turk

CLUSPI® Support for Collaborative Learning in a Dynamic Group Environment ... 320
 Kamen Kanev, Deborah Turk, John Brine, and Thomas Orr

Cognitive Structural Modelling of Skills for Technology-Enhanced Learning .. 322
 Dietrich Albert, Cord Hockemeyer, Birgit Mayer, and Christina M. Steiner

Cognitive Trait Model and Divergent Associative Learning ... 325
 Taiyu Lin, Kinshuk, and Sabine Graf

Collaborative e-Learning Among Teachers Using a Web Database in Special Support Education 328
 Masahito Nagamori, Msahiro Ando, Masaki Nagasawa, Pokpong Songmuang, and Maomi Ueno

Combine Adaptive Education Hypermedia and SCORM Compliant Learning Management Systems 330
 Ioannis Kazanidis and Maya Satratzemi

Conceptual Multi-Device Design on the Transition between e-learning and m-learning 332
 Rodrigo de Oliveira and Heloísa Vieira da Rocha

Concern-based Learning of Complex Software Platforms .. 335
 Imed Hammouda, Mika Jokinen, André L. Santos, and Kai Koskimies
<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concerto II: A Learning Community Support System Based on Question-Posing</td>
<td>338</td>
</tr>
<tr>
<td>Atsuo Hazeyama and Yuuki Hirai</td>
<td></td>
</tr>
<tr>
<td>Conducting Classroom Discussions in the Manner of an Orchestra Using a Mobile Phone Based Response Analyzing System</td>
<td>340</td>
</tr>
<tr>
<td>Ryo Nakai and Keizo Nagaoka</td>
<td></td>
</tr>
<tr>
<td>Constructing an Authentic Learning Community through Wiki for Advanced Group Collaboration and Knowledge Sharing</td>
<td>342</td>
</tr>
<tr>
<td>Chien-Hui Lin, Liang-Yi Li, Wen-Chu Hu, Gwo-Dong Chen, and Baw-Jhiune Liu</td>
<td></td>
</tr>
<tr>
<td>Constructing an MCSCL Groupware to Improve the Problem-Solving Experience of Mathematics for Hearing-Impaired Students</td>
<td>345</td>
</tr>
<tr>
<td>Chen-Chung Liu, Shu-Yuan Tao, Kuang-Wen Ho, Baw-Jhiune Liu, and Ching-Chi Hsu</td>
<td></td>
</tr>
<tr>
<td>Constructing the Game-Based Learning Environment on Handheld Devices to Facilitate English Vocabulary Building</td>
<td>348</td>
</tr>
<tr>
<td>Hui-Chun Hung and Shelley Shwu-Ching Young</td>
<td></td>
</tr>
<tr>
<td>Context-Aware Ubiquitous English Learning in a Campus Environment</td>
<td>351</td>
</tr>
<tr>
<td>Hsin-Chun Hsieh, Chih-Ming Chen, and Chin-Ming Hong</td>
<td></td>
</tr>
<tr>
<td>Data Flow between Tools: Towards a Composition-Based Solution for Learning Design</td>
<td>354</td>
</tr>
<tr>
<td>Luis Palomino-Ramírez, Alejandra Martínez-Monés, Miguel L. Bote-Lorenzo, Juan I. Asensio-Pérez, and Yannis A. Dimitriadis</td>
<td></td>
</tr>
<tr>
<td>Data-Driven Approach to Pronunciation Error Detection for Computer Assisted Language Teaching</td>
<td>359</td>
</tr>
<tr>
<td>Min-Siong Liang, Zien-Yong Hong, Ren-Yuan Lyu, and Yuan-Chin Chiang</td>
<td></td>
</tr>
<tr>
<td>Delivering Context-aware Learning Guidance in the Mobile Learning Environment based on Information Theory</td>
<td>362</td>
</tr>
<tr>
<td>Rita Kuo, Min-Chang Wu, Alex Chang, Maiga Chang, and Jia-Sheng Heh</td>
<td></td>
</tr>
<tr>
<td>Delivering IMS Learning Design Activities via Mobile Devices</td>
<td>367</td>
</tr>
<tr>
<td>Demetrios Sampson, Kerstin Götte, and Panayiotis Zervas</td>
<td></td>
</tr>
<tr>
<td>Design and Implementation of a Mobile Learning Environment as an Extension of SCORM 2004 Specifications</td>
<td>369</td>
</tr>
<tr>
<td>Kiyoshi Nakabayashi, Takahide Hoshide, Masanobu Hosokawa, Taichi Kawakami, and Kazuo Sato</td>
<td></td>
</tr>
<tr>
<td>Design and Implementation of Video-enabled Web-based Pronunciation Debugging System</td>
<td>374</td>
</tr>
<tr>
<td>Chih-Fang Chiu, Greg C Lee, and Ju-Hsush Yang</td>
<td></td>
</tr>
<tr>
<td>Designing a Bayesian Network Based Student Model for Distance Learning Environments</td>
<td>379</td>
</tr>
<tr>
<td>Michele Silva, Ricardo Silveira, Cecília Flores, and Rosa Vicari</td>
<td></td>
</tr>
<tr>
<td>Designing a Dynamic E-learning Project Performance Evaluation Framework</td>
<td>381</td>
</tr>
<tr>
<td>Hsiao-Ya Chiu, Chieh-Chung Sheng, and An-Pin Chen</td>
<td></td>
</tr>
<tr>
<td>Designing Innovative Learning Activities Using Ubiquitous Computing</td>
<td>386</td>
</tr>
<tr>
<td>Arianit Kurti, Marcelo Milrad, and Daniel Spikol</td>
<td></td>
</tr>
<tr>
<td>Developing a Robust Authoring Annotation System for the Semantic Web</td>
<td>391</td>
</tr>
<tr>
<td>Yan Bodain and Jean-Marc Robert</td>
<td></td>
</tr>
<tr>
<td>Development and Evaluation of a Self-Regulatory-Learning-Cycle-Based System for Self-Regulated e/m-Learning</td>
<td>396</td>
</tr>
<tr>
<td>Kuei-Ping Shih, Tai-Chien Kao, Chih-Yung Chang, and Hung-Chang Chen</td>
<td></td>
</tr>
<tr>
<td>Development of a Know-How Information Sharing System for Care Planning Processes</td>
<td>398</td>
</tr>
<tr>
<td>Kaoru Eto, Tatsunori Matsui, and Yasuo Kabasawa</td>
<td></td>
</tr>
<tr>
<td>Development of an Intellectual e-NOTEBOOK System for Group Learning Support</td>
<td>400</td>
</tr>
<tr>
<td>Xin Wan, Toshie Ninomiya, and Toshio Okamoto</td>
<td></td>
</tr>
</tbody>
</table>
Different Evaluations of e-Learning for Japanese Academic Reading between Foreign Students and Japanese Language Teachers ... 403
 Yukari Kato and Toshio Okamoto

Discovering New Knowledge with Advanced Data Mining Tool ... 408
 Simon Kocbek, Primoz Kosec, Peter Kokol, Mitja Lenic, and Matijaz Debeve

Doctorate machine: An Innovative Tool for a Non Paper Ph.D. Dissertation ... 411
 Manthos Santorineos

Educational Information Search Service Using Ontology .. 414
 Byoungchol Chang, Dall-ho Ham, Daesung Moon, Yong S. Choi, and Jaehyuk Cha

Edu-mining for Finding Keywords to Improve Message-Production Skills ... 416
 Ryo Nagata, Koji Sudu, Junichi Kakegawa, Koichiro Morihiro, and Kazuhiko Showji

Effect of Learning Styles on Peer Assessment in an Agent-based Collaborative Learning Environment 421
 Chung Hsien Lan, Sabine Graf, K. Robert Lai, and Kinshuk

Effective Student Assistance in Virtual Reality Based Intelligent Tutoring Systems ... 424
 Leticia Sanchez and Ricardo Imbert

E-mail-based Education Environment Using Mobile Phone Communication .. 427
 Toshiyuki Maeda, Tadayuki Okamoto, Tetsumi Miura, Yae Fukushima, and Takayuki Asada

Embracing Cognitive Aspects in Web Personalization Environments—The AdaptiveWeb Architecture 430
 Panagiotis Germanakos, Nikos Tsinanos, Zacharias Lekkas, Constantinos Mourlas, Marios Belk, and George Samaras

Enabling Knowledge Sharing with an Institutional Repository ... 432
 Gayatri Doctor and Smitha Ramachandran

Engineering Heterogeneous Distributed Learning Environments Using Tuple Spaces as an Architectural Platform ... 434
 Stefan Weinbrenner, Adam Giemza, and H. Ulrich Hoppe

E-Testing Construction Support System with some Prediction Tools .. 437
 Pokpong Songmuang, Masahiro Ando, Masahito Nagamori, Maomi Ueno, and Toshio Okamoto

Evaluating Learners’ Knowledge-Structure using Bayesian Networks .. 439
 Yasuko Namatame and Maomi Ueno

 Maurice Hendrix, Alexandra Cristea, and Mike Joy

Experiences of Adopting In-class Blogs in the Teaching of Hands-on Computer Laboratory Courses 447
 Yao-Jen Chang and Chi-Hui Chen

Finding a Fitting Learning Path in E-learning for Juvenile .. 449
 Jin-Cherng Lin and Kuo-Chiang Wu

Finding the Right Tool for the Community: Bringing a Wiki-Type Editor to the World of Reusable Learning Objects ... 454
 Chu Wang, Hugh C Davis, Kate Dickens, Gary Wills and Su White

FM and Web Broadcasting Systems for Mobile Language Listening .. 457
 Wang Shudong and Neil Heffernan

From Knowledge Publishing to Peer Review .. 459
 Akihiro Kashihara and Yasuhiro Kamoshita

From UML to CPM: A Few Lessons Learnt about CPM Language Usability .. 464
 Thierry Nodenot

Functionality and SCORM-Compliancy Evaluation of eLearning Tools ... 467
 Ivan Ganchev, Mairtin O’Droma, and Radoslav Andreev
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographical Concept Recognition with the Octgrid Method for Learning Geography and Geology</td>
<td>470</td>
</tr>
<tr>
<td>Ryusuke Yokoyama, Akira Kureha, Tomoe Motohashi, Hiroyasu Ogasawara, Takeo Yaku, and Daisuke Yoshino</td>
<td></td>
</tr>
<tr>
<td>Geography Learning Technology Based on 3D CG with Geography Data Archives</td>
<td>472</td>
</tr>
<tr>
<td>Daisuke Yoshino, Satoshi Kishira, Miyuki Shimizu, Kensei Tsuchida, Shin-ya Uehara, and Takeo Yaku</td>
<td></td>
</tr>
<tr>
<td>Graphical Representation of Abstract Learning Scenarios: The UML4LD Experimentation</td>
<td>477</td>
</tr>
<tr>
<td>Pierre Laforcade</td>
<td></td>
</tr>
<tr>
<td>Grid Enabled Collaborative Learning</td>
<td>480</td>
</tr>
<tr>
<td>Colin Allison, Ross Nicoll, Stuart D.J. Purdie, Marc Eisenstadt, Jiri Komzak, and Chris Denham</td>
<td></td>
</tr>
<tr>
<td>Handheld Computer Supported Context-Aware Learning with 2D Barcodes</td>
<td>485</td>
</tr>
<tr>
<td>Yu-Ling Chu and Tsung-Yu Liu</td>
<td></td>
</tr>
<tr>
<td>Impact of Process Goal and Outcome Goal on Learning Performance for Web-Based Learners</td>
<td>487</td>
</tr>
<tr>
<td>Nian-Shing Chen, Kinshuk, Chun-Wang Wei, and Feng-Hsien Hsu</td>
<td></td>
</tr>
<tr>
<td>Impediments to Adoption of e-Learning Technology in Combating Anti-Money Laundering in UAE Banks</td>
<td>489</td>
</tr>
<tr>
<td>Alya Al Hammadi, Imran A. Zualkerman, and Rana Ahmed</td>
<td></td>
</tr>
<tr>
<td>Indicators’ Elicitation Process for Re-Engineering of Learning Scenario: Tracks Approach Based on Usage Tracking Language</td>
<td>492</td>
</tr>
<tr>
<td>Noa Randriamalaka, Sébastien Iksal, and Christophe Choquet</td>
<td></td>
</tr>
<tr>
<td>Innovative Technologies for Learning in Science Laboratories</td>
<td>497</td>
</tr>
<tr>
<td>Frédéric Fournier and Martin Riopel</td>
<td></td>
</tr>
<tr>
<td>Instructional Software Analysis: Lessons from Software Development Process Improvement</td>
<td>499</td>
</tr>
<tr>
<td>David Díez, Camino Fernández, Juan Manuel Dodero, Paloma Díaz, and Ignacio Aedo</td>
<td></td>
</tr>
<tr>
<td>Integrated Paper Slide in Classroom to Enhance Interaction Using Digital Pens</td>
<td>502</td>
</tr>
<tr>
<td>Yi-Ping Lin, Po-Yao Chao, Gwo-Dong Chen, and Jorong-Tzong Horng</td>
<td></td>
</tr>
<tr>
<td>Integrating Dynamic Program Visualization into BlueJ: The Jeliot 3 Extension</td>
<td>505</td>
</tr>
<tr>
<td>Niko Myller, Roman Bednarik, and Andrés Moreno</td>
<td></td>
</tr>
<tr>
<td>Integrating Face Recognition Techniques with Blog as a Distance Education Support System (DESS) in International Distance Learning</td>
<td>507</td>
</tr>
<tr>
<td>Hsiu-Ping Yueh, Yi-Ling Liu, Wei-Jane Lin, Tetsuo Shoji, and Michihiko Minoh</td>
<td></td>
</tr>
<tr>
<td>Intelligent Web-based Tutoring System with Personalized Learning Path Guidance</td>
<td>512</td>
</tr>
<tr>
<td>Chin-Ming Hong, Chih-Ming Chen, Mei-Hui Chang, and Shin-Chia Chen</td>
<td></td>
</tr>
<tr>
<td>Intelligibility Catchers for Self-Managed Knowledge Transfer</td>
<td>517</td>
</tr>
<tr>
<td>Chris Stary</td>
<td></td>
</tr>
<tr>
<td>Interactive Educational Technologies for New Generations in China</td>
<td>522</td>
</tr>
<tr>
<td>Xuemei Li</td>
<td></td>
</tr>
<tr>
<td>Internet-based Survey Design: Principles from a Thai Experimental Study</td>
<td>525</td>
</tr>
<tr>
<td>Poonsri Vate-U-Lan</td>
<td></td>
</tr>
<tr>
<td>Interoperable Bayesian Agents for Collaborative Learning</td>
<td>530</td>
</tr>
<tr>
<td>Elisa Boff, Elder Rizzon Santos, Moser S. Fagundes, and Rosa Maria Vicari</td>
<td></td>
</tr>
<tr>
<td>Is Less Actually More? The Usefulness of Educational Mini-games</td>
<td>533</td>
</tr>
<tr>
<td>Alex Frazer, David Argles, and Gary Wills</td>
<td></td>
</tr>
<tr>
<td>Learning Information Systems Engineering and its Management from Experience of a Tiny Project through University-Industry Collaboration</td>
<td>538</td>
</tr>
<tr>
<td>Yoshiaki Matsuzawa and Hajime Ohiwa</td>
<td></td>
</tr>
</tbody>
</table>
Learning Management Systems' Database Exploration by Means of Information Visualization-Based Query Tools
Celmar Guimarães da Silva and Heloísa Vieira da Rocha

Learning Mechanisms for a Tutoring Cognitive Agent
Usef Faghihi, Daniel Dubois, and Roger Nkambou

Learning Objects Reusability and Retrieval through Ontological Sharing: A Hybrid Unsupervised Data Mining Approach
Ching-Chieh Kiu and Chien-Sing Lee

Leveraging the Semantic Web for Providing Educational Feedback
Jelena Jovanović, Dragan Gašević, Cristopher Brooks, Timmy Eap, Vladan Devedzic, Marek Hatala, and Griff Richards

Longitudinal Syntactic Analysis of Laboratory Submissions for Examining Problem-Solving Behaviour
Cara MacNish

Long-Term Memory of Foreign-Word Learning by Short Movies for iPods
Satoko Amemiya, Kazunori Hasegawa, Keiichi Kaneko, Haruko Miyakoda and Wataru Tsukahara

Managing Personalized and Adapted Medical Learning Objects
Juha Puustjärvi and Leena Puustjärvi

MapEvaluator in Action: A Comparative Test on the Efficiency of the Quantitative Concept Map Evaluation in a Primary School
Carlo Giovannella, Paolo Emilio Selva, and Sara Frazio

mArachna—Applying Natural Language Processing Techniques to Ontology Engineering
Sabina Jeschke, Nicole Natho, Sebastian Rittau, and Marc Wilke

Maths Adaptive Tutorial System for Learners with Disabilities
James Ohene-Djan and Benoy Sen

Memorization and Training Activities in Mobile Devices
Ainara Urrutia, Naiara Maya, Josune Gereka, Ohian Odriozola, Jon A. Elorriaga, and Ana Arruarte

Mining Key Formative Assessment Rules based on Learner Profiles for Web-based Learning Systems
Chih-Ming Chen, Ming-Chuan Chen, and Yi-Lun Li

Mobile Computing to Seamlessly Integrate Formal and Informal Learning
Henning Breuer, Roberto Konow, Nelson Baloian, and Gustavo Zurita

Modeling and Building Intelligent Learning Environments through Intelligent Learning Objects
Júlia Marques Carvalho da Silva and Ricardo Azambuja Silveira

Motivating Online Expertise-Sharing for Informal Learning: The Influence of Age and Tenure in Knowledge Organizations
David Huffaker and Jennifer Lai

Not Afraid to Ask
Ko-Kang Chu, Ming-Chuan Li, and Yen-Teh Hsia

Observation Scenario Development Using Recommendations
Vincent Barre, Christophe Choquet, and Sébastien Iksal

Operationalization of the Metadata Element “Difficulty”
Margit Kastner and Gerhard Furtmüller

Organizational Memory towards School Customs Constructing
Yueliang Zhou and Jingyao Wang

PALS2: Pedagogically Adaptive Learning System Based on Learning Styles
Melody Siadaty and Fattaneh Taghiyareh
Sharing an Ontology in Education: Lessons Learnt from the OURAL Project ... 694
 Monique Grandbastien, Faïcal Azouaou, Cyrille Desmoulins, Richard Faerber, Dominique Leclet and Céline Quéné-Joiron
Social Network Analysis of Interaction in Online Learning Communities ... 699
 Yonggu Wang and Xiaojuan Li
Social Presence and Student Perceptions in the Blend of Synchronous and Asynchronous Communication Forms .. 701
 Miriam Weinel and Chun Hu
Standards and Tools for Context-Aware Ubiquitous Learning.. 704
 Fan-Ray Kuo, Gwo-Jen Hwang, Yen-Jung Chen, and Shu-Ling Wang
Streaming Multimedia Delivery in Web Services Based E-Learning Platforms ... 706
 Gibson Lam and David Rossiter
SWAPS: Semantic Web Approach for Personalisation of Study .. 711
 German Nemirovskij, Michael Thomas Egner, and Eberhard Heuel
Teaching UML Modeling Before Programming at the High School Level .. 713
 Cortland Starrett
The Adaptive and Intelligent Testing Framework: PersonFit.. 715
 Komi Sodoké, Gilles Raiche, and Roger Nkambou
The Advanced Mobile Learning Practices: Learning Features and Implications .. 718
 Robert Yu-Liang Ting
The Analysis of Response Patterns on IRT Ability Estimation Methods in Computerized Adaptive Test................................. 721
 Deng-Jyi Chen, Ah-Fur Lai, and Chia-Chi Mao
The Analysis of Simpson’s Psychomotor Domain Educational Objectives and its Application on the Skill Evaluation for the Department of Computer Engineering at Vocational School .. 723
 Wen Chuan Wu, Yi Chyang Yang, and Chien Pen Chuang
The Application of IMS Learning Design to Develop Compute-Based Educational Game .. 726
 Miaomiao Zeng and Yue Liang Zhou
The Design of e-Learning Environment Oriented for Personalized Adaptability.. 728
 Toshie Ninomiya, Ken Nakayama, Miyuki Shimizu, Fumihiko Anma, and Toshio Okamoto
The Designing of a Web Page Recommendation System for ESL .. 730
 Chen-Chung Chi, Chia-Chung Kuo, and Chia-Chun Peng
The Development of Computerized Two-Tier Diagnostic Test and Remedial Learning System for Elementary Science Learning .. 735
 Ah-Fur Lai
The Effects of Knowledge Sources and Learning Styles of the Elders on their Motivations to Use Weblog Tools for Lifelong Learning .. 737
 Li-Chieh Chen, Po-Ying Chu, Chang-Chen Lin, and Yun-Maw Cheng
The Emergence of Pragmatic Community Practice and Specifications — Results from the European LIFE Project .. 739
 Tore Hoel and Paul Hollins
The Interactive Multimedia Textbook: Using a Digital Pen to Support Learning for Computer Programming 742
 Wei-Chu Lai, Po-Yao Chao, and Gwo-Dong Chen
The Open Lausanne Model: A Reference Model for Open Adaptive Learning Objects Systems 747
 Hend Madhour and Maia Wentland Forte
The PLEXus Prototype: A PLE Realized as Topic Maps ... 750
 Line Kolás and Arvid Staupe
The Promise and Practice of E-Learning within Complex Tertiary Environments ... 753

E. Marcia Johnson and Ruth Walker

The Question Model Inside ArikIturri .. 758

Itziar Aldabe, Maddalen Lopez de Lacalle, Montse Maritxalar, and Edurne Martinez

The Role of Evaluation in an Effective Development of Didactic Materials: The MD2 Approach ... 760

Carmen L. Padrón, Paloma Díaz, and Ignacio Aedo

The Software Equipments Based on Simulator .. 762

Takahiro Masuda, Hiroshi Suda, and Yoshiro Miida

The TenC Competence Observatory: An Enabling Technology for Common Description of Competences 765

Panayiotis Zervas and Demetrios Sampson

The Use of Practitioners Concepts of Inclusivity to Inform the Planning of Learning Activities .. 770

Emma Bradburn

The Use of XML to Create a Historical Knowledge Base 772

Katsuko T. Nakahira, Masashi Matsui, and Yoshiki Mikami

The Views of Educational Practitioners in Ghana on ICT Use and Instructional Design Practice for Promoting Quality Education ... 775

Frederick Kwaku Sarfo

The Web 2.0 Driven SECI Model Based Learning Process 780

Mohamed Amine Chatti, Ralf Klamma, Matthias Jarke, and Ambjörn Naeve

To Improve Bayesian Network Learner Modelling Thanks to Multinet ... 783

Mathieu Hibou and Jean-Marc Labat

Toward Making Didactics a Subject of Knowledge Engineering 788

Rainer Knauf, Yoshitaka Sakurai, and Setsuo Tsuruta

Towards a Canonical View of Peer Assessment 793

David E. Millard, Karen Fill, Lester Gilbert, Yvonne Howard, Patrick Sinclair,

Damilola O. Senbanjo, and Gary B. Wills

Towards a Common Graphical Language for Learning Flows: Transforming BPEL to IMS Learning Design Level A Representations ... 798

Pythagoras Karampiperis and Demetrios Sampson

Towards a Computer-Based Supporting Infrastructure for Outcome-Based Education .. 801

Mangtang Chan, Florence Yu Mong, and Francis Kar Ho Chan

Towards a Unified Learning Style Model in Adaptive Educational Systems ... 804

Elvira Popescu, Philippe Trigano, and Costin Badica

Towards Advanced Learner Modeling: Discussions on Quasi Real-Time Adaptation with Physiological Data .. 809

Emmanuel Blanchard, Pierre Chadfoum, and Claude Frasson

Towards Collaborative Domain Module Authoring 814

Mikel Larranaga, Ianire Niebla, Urko Rueda, Ana Arruarte, and Jon A. Elorriaga

Towards Defining a Suitable Environment for Teaching Digital Arts: The Delphous Experiment .. 819

Manthos Santorineos, Stavroula Zoi, Nefeli Dimitriadi, and Chu-Yin Chen

Towards Mixed-Initiative Interactions in Novice Programming 822

Shilpi Rao, Liam Doherty, and Vive Kumar

Towards Semantic Group Formation ... 825

Asma Ounnas, Hugh C Davis, and David E Millard

Two Different Methods to Analyze the Strategies of Problem Solving in a Natural Situation

Using a Simulator: A Case Study .. 828

Jean-Marc Labat, Pierre Pastré, Pierre Parage, Michel Futtersack,

Jean-François Richard, and Emmanuel Sander
Usability of a Content Construction System for Collaborative Learning .. 833
Tomoo Inoue, Naoko Yoshimura, Shigeo Sugimoto, and Noriko Kando

Using a Competence Model to Aggregate Learning Knowledge Objects ... 836
Amal Zouaq, Roger Nkambou, and Claude Frasson

Using a Programmable Storytelling Robot to Motivate Learning Second Language .. 841
Ying-Tsuan Lu, Chih-Wei Chang, and Gwo-Dong Chen

Using Chatbots for Network Management Training through Problem-Based Oriented Education 845
Michelle Denise Leonhardt, Liane Tarouco, Rosa Maria Vicari, Elder Rizzon Santos, and Michele dos Santos da Silva

Using Graphical Models to Unobtrusively Assess Student Performance in Educational Image Processing Activities ... 848
Steven Tanimoto, Nathan Evans, and Adam Carlson

Using Machine Learning to Predict Learner Emotional State from Brainwaves .. 853
Alicia Heraz, Ryad Razaki, and Claude Frasson

Variety of Quality Experiences on Web-Based Courses ... 858
Kirsi Silius and Anne-Maritta Tervakari

VCSR: Video Content Summarization for Recommendation .. 862
Chi-Cheng Tsai, Ching-I Chung, Yi-Ting Huang, Chia-Hsing Shen, Yu-Chieh Wu, and Jie-Chi Yang

Virtual Experiment using Cyber Assistant Professor: CAP ... 865
Yoshiaki Shindo and Hiroshi Matsuda

Virtual Laboratory with Force Feedback Device for Physics Collaborative Learning Using Lever Content .. 870
Hiroyuki Hamanaka, Yukihiro Matsubara, and Noriyuki Iwane

Visualizing Narrative Structures and Learning Style Information in Personalized e-Learning Systems 872
Fionán Peter Williams and Owen Conlan

Web-based Active e-Learning Tools for Automata Theory ... 877
Mohamed Hamada

WebLD: A Web Portal to Design IMS LD Units of Learning ... 880
Eduardo Sánchez, Manuel Lama, Ricardo R. Amorim, and Angel Negrete

Which are the Best e-learning Tools for an Engineering Degree in the European Higher Education Area? 882
Lluís Vicent, Guillem Bou, Xavier Avila, Jordi Riera, José A. Montero, and Jaume Anguera

Zing'Em: A Web-Based Likert-scale Student-Team Peer Evaluation Tool .. 887
Brent N. Reeves

Panel: Preparing Coming Generations of Educational Technologists: Technology, Pedagogy and Curricula—Changes and Challenges

Preparing Coming Generations of Educational Technologists: Technology, Pedagogy and Curricula—Changes and Challenges ... 890
Roger Hartley, Kinshuk, and Rob Koper

xvii
Panel: In Search of Quality Learning Technologies for Online Distributed Classrooms

In Search of Quality Learning Technologies for Online Distributed Classrooms ...893
Madhumita Bhattacharya and Jon Dron

Lost in the Web 2.0 Jungle ...895
Jon Dron and Madhumita Bhattacharya

Cultivating the Web 2.0 Jungle ..897
Madhumita Bhattacharya and Jon Dron

Diversity in Online Learners: Searching for Differences that May Matter..899
Maggie Hartnett, Madhumita Bhattacharya, and Jon Dron

Interaction Analysis to Design Distributed Learning Environment ..901
Laila Oubenaissa-Giardina and Madhumita Bhattacharya

Does Interactivity with Content Enhance the Quality of Learning? ..903
Yasmin Bhattacharya and Madhumita Bhattacharya

Challenges for the Enhancement of Learning Activities on Electronic Discussion Forums: With Tools and Educational Programs ...905
Satoru Fujitani

‘Constructive Alignment’ and Learning Technologies: Some Implications for the Quality of Teaching and Learning in Higher Education ..907
Mike Mimirinis

Inspectable Collaborations in Online Distributed Classrooms ..909
Vive Kumar

E-portfolio as Intercultural Cognitive Environment to Enhance Teachers’ Professional Development and Personal Growth ..911
Laïla Oubenaïssa-Giardina, Helen Hensler, and France Lacourse

Workshop: Advanced Learning Technologies for Disabled and Non-Disabled People

Training of Speechreading for Severely Hearing-Impaired Persons by Human and Computer ...913
Hans-Heinrich Bothe

Mathematical Working Environments for the Blind: What is Needed Now? ..915
Dominique Archambault and Bernhard Stöger

Teaching Science Subjects to Blind Students ...917
Dónal Fitzpatrick

A User-Centered Approach for Developing Advanced Learning Technologies Based on the Comprehensive Assistive Technology Model ...919
Marion A. Hersh and Michael A. Johnson
Workshop: Machine-Mediated Multimodal Communication (M3C)

Machine-Mediated Communication of Information ... 921
 Adel Elsayed

Communication and Design in Multimodal Presentations ... 923
 Roger Hartley, Adel Elsayed, and Milena Pesheva

Dimensions of Media Object Comprehensibility ... 925
 Lawrie Hunter

Cooperative Picture Card Dictionary Authoring System for Communicative Language Learning ... 927
 Masahiro Yachi

Applying Web Usage Mining Techniques to Discover Potential Browsing Problems of Users ... 929
 I-Hsien Ting, Chris Kimble, and Daniel Kudenko

Semantic Processing for Text Mapping onto Information Space ... 931
 Weiqiang Ou and Adel Elsayed

Workshop: Educational Data Mining @ ICALT07 (EDM@ICALT07)

Workshop on Educational Data Mining @ ICALT07 (EDM@ICALT07) .. 933
 Joseph E. Beck, Toon Calders, Mykola Pechenizkiy, and Silvia Rita Viola

A Outliers Analysis of Learner’s Data based on User Interface Behaviors 935
 Yong Se Kim, Tae Bok Yoon, Hyun Jin Cha, Young Mo Jung, Eric Wang, and Jee Hyong Lee

A Framework for Using Web Usage Mining to Personalise E-learning 937
 Hafidh Ba-Omar, Ilias Petrounias, and Fahad Anwar

User Session Models for Educational Systems Based on Multiple Knowledge Structures 939
 Judit Jassó and Alfredo Milani

Analyzing the Data Collected by Programming Tutors that Provide Post-Practice Reflection 941
 Amruth Kumar and Peter Rutigliano

Tutorials

Authoring of Adaptive Educational Hypermedia ... 943
 Alexandra Cristea

Innovations in e-Pedagogy ... 945
 Vive Kumar

Creating E-portfolio with OSP ... 947
 Madhumita Bhattacharya and Mike Mimirinis

Author Index .. 949
Not Afraid to Ask

Ko-Kang Chu, Ming-Chaun Li and Yen-Teh Hsia

1Dept. of Electronic Engineering Chung-Yuan Christian Univ. Chung-Li, 320, Taiwan
2Center for Teacher Education Chung-Yuan Christian Univ. Chung-Li, 320, Taiwan
3Dept. of Information and Comp Engineering Chung-Yuan Christian Univ. Chung-Li, Taiwan

1kirk@ms2.hinet.net, 2betty@cycu.edu.tw, 3hsia@ice.cycu.edu.tw

ABSTRACT

Questioning is an essential process of learning and thinking. However, few students are willing to ask questions in class because of the pressure from many sources including their past experiences, teachers, peers, or themselves. A computer system NATA was designed in this research based on the two-phase questioning process to help students ask questions by reducing their questioning pressure. An experiment was conducted to study the effectiveness of NATA. More than 85% of the students in this research agreed that NATA made classroom questioning easier and more comfortable and could promote their questioning and the class’ questioning atmosphere. The results also showed significant improvement of students’ questioning behaviors after using the system.

1. Introduction

Albert Einstein said: “The important thing is not to stop questioning.” Questioning is a powerful tool to make decisions, solve problems, and make things better [9]. Questioning is also critical to the development of reflective and metacognitive thinking. People examine and challenge their knowledge and understanding through questioning process. By doing that, they are able to change and improve their learning and thinking, generate new ideas, and motivate their curiosity [10]. Students who ask questions are active learners that they can do their learning more deeply and assimilate and apply the knowledge they have learned [13]. Students can not truly think, learn, and understand unless they have questions [8]. Therefore, how to motivate students to think and ask questions is one of the critical tasks in teaching.

Although questioning is an essential key to learning and thinking, few students are willing to ask questions in class. About 95% of students who have questions do not ask their questions in the classroom [4]. One of the main reasons that students hesitate to raise their questions is the pressure of questioning [1][2][4][5][13]. The pressure comes from four sources: (1) Cultural background: The traditional social-cultural perceptions and parental attitudes toward questioning will have long-term effect on students that discourage their questioning behavior. For example, parents in Taiwan used to tell their children that good students always keep quiet in class and do not question teachers. (2) Teachers: Either a teacher’s teaching style that does not promote students to ask questions or his/her negative responses to students’ questioning will make students feel much stressful to ask questions in class. (3) Peers: When students receive unpleasant feedback from their classmates, their courage and willingness of asking questions will decrease. Finally, no one will ask questions in class. (4) Personality: Students who are shy, lack of self-confidence, bad at expressing thoughts verbally or easy to feel nervous and anxious in public usually give up asking questions in class. It is hard for students to ask questions in class if they can not overcome the above pressures.

In order to encourage students to raise questions in class, we develop a prototype of the questioning system NATA (Not Afraid to Ask) in Spring 2006. The main idea of the design is to reduce the questioning pressure of students. A usability test was conducted among 123 students and the opinions of using the system were gathered from these students. The results indicated that NATA can help students to ask question in class. In this research, we redesign the interface and increase new functions to make the questioning process easier and more interesting according to previous students’ opinions and the observation in the classroom. In addition to users’ opinions, we also collected questioning data to investigate the change of students’ questioning behaviors before and after using NATA.

The contribution of this research is that we develop a computer system that can promote students’ questioning behaviors and motivate students to start to ask questions in the class by lowering the pressure of questioning.
2. Related Works

Several researchers have suggested different ways to make asking questioning easier for students who are afraid to ask questions in class. For example, students can write down their questions during class and return those to their teachers after class; the questions will then be answered by the teachers at the beginning of next class. Students can also ask questions through online forums or email after class [1][13]. Although these methods can reduce the questioning pressure of students that comes from students’ classmates, themselves, and their past experience to some degree, they are usually failed to provide appropriate timing for students to ask questions and get answers at the moment when students still have fresh ideas of their learning.

Some studies have tried to design computer systems to improve question-and-answer activities in the class. Audience Response System [12] and EduClickII System [3] are the examples of using special-designed hardware device for students to respond to teacher’s questions by simply pushing the buttons on the device. Classroom Feedback System [7] is another system that allows students to answer questions by typing texts. These systems were found to improve students’ active learning and their interaction with teachers. However, the main purpose of these systems was to support students to answer questions but not to ask questions. Boomerang is a two-way questioning system that students can both answer and ask questions through it [11]. Yet, little attention has been paid on how to assist and encourage students to ask questions in class without fear.

The aim of NATA is to encourage students to ask questions actively by reducing the pressure of asking questions and making the questioning process easy and interesting in the class. It is hoped that students are allowed to think freely and willing to share their ideas and questions with their teacher and classmates. The design and functionality of NATA are introduced in the next section.

3. System Design

When students do the thinking and come up with questions in their learning process, they have to overcome a lot of intrinsic and extrinsic pressure before they can raise their hands and ask questions [6][13]. Moreover, students are not willing to be the first one to ask questions because they can not expect the reactions of their teachers or classmates toward their questions. As a result, it is hard to promote the questioning atmosphere in the class because no one would break the ice of questioning activity [4]. Hence, the main idea of NATA is to reduce the questioning pressure by lowering and distributing the degree and the sources of pressure so that students can raise their questions easily and successfully by using this system.

Based on the observation of students questioning behaviors in the classroom, questioning process can be divided into two phases. We call it “the two-phase questioning process”. Phase 1 is preparation of questions. In this stage, questions are formed in students’ brains and then jotted down on papers or memorized. The priorities of these questions will be set and some questions might not be asked. Phase 2 is asking questions. In this stage, students raise their questions that are already prepared in their mind or on papers. Figure 1 shows the design of NATA to reduce questioning pressure of students. The left part illustrates the degree of pressures students have to overcome before they can raise questions in traditional classrooms. The right part shows the pressure of asking questions is dispersed by NATA based on the questioning phases. The objective of NATA is to make it easier for students to overcome the questioning pressure because the pressure in each phase is lower than the degree in the traditional classroom.

![Figure 1: NATA can reduce the pressure of questioning.](image)

The main features of NATA includes: Question Input, Questioning Race, Statistics Report, and Data Record. The design and function of each feature is described as follows.

- **Question Input**

This feature allows students and teachers to enter the questions they want to ask at any time during the class. Traditionally, people usually keep questions in mind or jot down their questions they want to ask during the class and wait for chance to ask questions. However, remembering all questions they would like to ask is not easy because they have to pay attention to the lecture or presentation while trying to remember the questions at the same time. Although writing questions on papers can help people remember what to ask later, this is not an efficient way for students to organize, modify, and keep their questions. Besides, it is difficult for teachers to immediately observe how many students have prepared questions and what kind
of questions they want to ask. By using NATA, both teachers and students can jot down questions right away and modify them at anytime before the questions are asked. This feature can be viewed as a personal digit question taker.

The feature is corresponding to the questioning process Phase1. It is designed to reduce the questioning pressure by giving students more time and a convenient tool to prepare questions as well as giving them the right to decide whether to ask the questions they prepared. It can also increase students’ self-confidence because they can fully control their preparation of questions. Moreover, students can prepare questions without worrying about being criticized by other people because the questions they entered will not be shown to the class until they decide to actually ask the questions. This will make students feel easy and comfortable to prepare and enter questions, especially for those who are shy, bad at oral expression, or lack of confidence or who need more time to prepare questions. By organizing the questions and thinking over and modifying them, students are encouraged to do self-reflection and to improve their meta-cognitive and critical thinking abilities.

- **Questioning Race**

 After preparing questions, the next phase is to ask questions. In traditional classroom, students raise hands to ask questions. By using NATA, students simply click the bell showed aside each question they entered and the question will then be asked. The mechanisms of questioning race turn the questioning process into exciting and interesting game because the key point is to make students willing to be the first one to ask question. Once someone starts to ask question, other students will feel less stressful and more comfortable and easy to ask questions and the questioning atmosphere will be improved. Additional rewards (e.g., extra bonus) can also be given to help encouraging students to click the bells if necessary.

 The rule of the questioning race is that students have to push bells and try to win the chance of asking questions. Each time when teacher open a round for questioning race, each question entered by students will be accompanied with a bell. Students have to choose the question they want to ask and click the bell of the question as quick as they can before the racing time is over. The system will decide the winner and send his/her question and ID to everyone’s screen immediately. The decision rule of the winner is based on the speed of clicking the bell, the winner delay, and a randomly assigned number (we call it “lucky number”). The winner is the one who get the smallest value of the sum of these three indicators’ data. Winner delay is controlled by the delay mechanism in order to let everyone have the opportunity to win the chance for questioning. That is, the winner will be given a fixed delay value in the next round of the questioning race. In addition, the purpose of the lucky number is that students who click bells slower can still have chance to be the winner. This will help them still be willing to press the bells even if other student already clicked the bell.

 To make the questioning race more interesting, a countdown scheme is designed to draw students’ attention and to create the exciting atmosphere of waiting to press the bell. After teacher sets the start of a questioning race, a countdown clock will appear on students’ screens (see Figure 2). The questioning bells will be shown after the countdown finishes.

 While students have to wait until the questioning time to ask questions, teacher can hit the bells aside the questions s/he entered at anytime during the class.

 ![Image](image.png)

 Figure 2: The countdown clock and Statistics Report of the whole class and individually students.

- **Statistics Report**

 Statistics Report (Figure 2&3) allows students and teachers to know the questioning performance of all students in real-time. The amount of questions entered and asked by the whole class and by individual students is updated and displayed respectively on the top of the questioning window and in a table that can be open and closed. Besides, the messages of all activities such as the start of questioning race and the determination of the winner are displayed on everyone’s screen in real-time. The main idea of this feature is to encourage and stimulate students to think more questions and ask more through the clearly presented statistics. It is also convenient and timesaving for teachers to keep records of all students about how many and what questions they have asked.
Moreover, the data can be a fair reference of grading when necessary.

![Image](image.png)

Figure 3: The questions entered by a student (mid-left) and all questions being asked in the class (mid-right)

Data Record

This feature saves details of the questions that are entered, modified, and asked. Although only the final modification of the questions is displayed, every change will be saved for future reference and analysis. Questions that are entered and asked will be kept in NATA after the class so that students and teachers can go over those questions again whenever they want. Teachers can identify what and how much students have learned and what difficulties these students encountered so that they can adjust their teaching strategies or pace accordingly. As for students, reading others’ questions may stimulate their thinking and learn to make good questions as well as improve their questioning skills. Questions can also be organized for further discussion after class.

4. Implementation

The NATA system was implemented in the course “Introduction to Computers” of the Department of Psychology at a private university in Taiwan. Students used NATA to enter and ask their questions during midterm group presentations. There were 56 students into 17 groups. Each group had about 20 minutes to present their subjects and 10 minutes for other students to ask regarding their subject. Three to four groups of students presented in the two-hour class each week for five weeks. In order to compare students’ questioning behaviors before and after using the NATA system, the questioning activity during the first two weeks were processed in traditional way, that is, students listened to the presentations and raised their hands to ask questions after the presentation. Students could write down their questions during the presentation if they want. The questioning data of the first two weeks were recorded by teaching assistant. After two weeks of presentation, the NATA system was applied to the class for three weeks. The effectiveness of NATA on students’ questioning behaviors was evaluated in this study. A self-designed questionnaire was also used to collect the students’ opinions regarding the use of the system.

When using NATA, every student could enter questions at any time during the presentation. After the presentation, teacher started the questioning race that students had to click on the “bell” showed aside each question they have entered to compete for the chance to ask out the question. The winner’s question would then be showed on everyone’s screen. After the presenters answered the question, teacher would then open the questioning race for next round. During the questioning race, students could keep entering their questions. The number of rounds opened would depend on the time available.

5. Results and Discussion

The results show statistically significant difference of the effect of NATA on students questioning behaviors. The amount of questions that students prepared by entering in NATA is significantly more than by writing on papers traditionally ($t = 2.89, p < 0.05$). There are also significantly more different students preparing questions by the use of NATA than in traditional questioning process ($t = 2.72, p < 0.05$). The findings suggest that NATA can motivate more students to think more questions in comparison with traditional way of ask questions. To investigate whether NATA encouraged more students to ask questions, the finding shows the number of students who clicked the bell in NATA to ask questions is significantly higher than raised hands to ask question traditionally ($t = 6.75, p < 0.001$).

From the results of users’ opinions, the NATA is thought to be helpful to students’ questioning regarding to its design. More than 90% of students agreed that the design of Question Input can make questioning easier and less stressful because they can jot down and edit their questions at anytime during the class and decide whether to ask those questions later. In addition, more than 85% of students reported that the mechanisms of Questioning Race make the questioning process more interesting and improve the questioning atmosphere of the class. There are more than 60% of students agreed that they would enter more questions and clicked the bells when they saw the Statistics
Students also reported that they can clearly know about the content of each being-asked question (96.4%), think of further questions (73.2%), and learn more about how to ask questions (87.5%) when they see what other students asked. Overall, about 95% of students hope to use NATA again in the future.

6. Conclusion and Future Work

In this research, we found that NATA can increase students’ willingness of asking questions and improve their questioning behaviors because this system makes the questioning process less stressful and more exciting. We view this system as a bridge to help students stride across the obstacles of questioning and hope it can have long-term effect on their questioning behaviors. Because the system was only used for three weeks, whether the outcomes of the effectiveness were resulted by the effect of novelty will need to be clarified by future studies. Because more than 70% of students hoped to get the comments of their questions from their teacher and classmates, the other issue that is valuable to explore in the future is how the feedbacks given to the questions from others will impact the willingness and quality of questioning, and improve reflective and metacognitive thinking of students.

7. References

